

©2025 eskematize.me

© 2025 Eskematize.me.

Todos os direitos reservados.

Este e-Book pode ser usado livremente em contexto educativo.

Não é permitido copiar, vender ou modificar este material sem autorização.

Queremos que este recurso continue a ser útil para muitos alunos e professores, por isso, partilhe com os créditos visíveis e sem alterar o conteúdo.

Conteúdo e ideia original: Isabel Simões

Design e organização: Isabel Simões

Revisão e apoio nos detalhes: Alberto Simões

Entre em contacto!

Tem dúvidas, sugestões ou quer usar este material de outra forma? Fale connosco!

eskematize.me@gmail.com

https://www.facebook.com/eskematize.me

https://www.instagram.com/eskematize.me/

https://eskematize.me/

ÍNDICE

INTRODUÇÃO	4
ESTA É A NOSSA LUA	5
1.1 SEGREDOS LUNARES	6
1.2 RETRATOS DA LUA	7
2 A LUA AO LONGO DO TEMPO	9
2.1 CALENDÁRIO LUNAR	10
2.2 MITOS LUNARES	13
3 COM A CABEÇA NA LUA	16
3.1 A CONQUISTA DA LUA	17
3.2 APRENDER NA LUA	19
4. COM OS PÉS NA TERRA	21
CONCLUSÃO	23

INTRODUÇÃO

A humanidade tem tentado compreender e conquistar a Lua desde sempre. Faz parte da sua natureza.

Por outro lado, é na sala de aula que a curiosidade dos alunos encontra o conhecimento científico.

Trazer a Lua para a sala de aula é, por isso, uma oportunidade de despertar o gosto pela ciência e estimular o pensamento crítico.

As atividades aqui apresentadas não se dirigem a nenhum nível de escolaridade específico. Têm, apenas, um ponto comum: a Lua! E são, talvez, as atividades que eu própria gostaria de ter realizado enquanto aluna.

Isabel

1.1 SEGREDOS LUNARES

A Lua é, simultaneamente, o corpo celeste mais familiar e mais misterioso do nosso céu noturno. Todos a vemos, mas poucos conhecem os segredos que ela encerra. Este primeiro capítulo é um convite à descoberta: uma oportunidade para os alunos se surpreenderem com factos e curiosidades que os levam a querer saber ainda mais!

Atividade proposta:

- Consultar fontes diversas e pesquisar algumas características e curiosidades sobre a Lua.
- Escolher o facto mais surpreendente e justificar a escolha.

ESKEMA F.O75 A LUA ESKEMATIZE.ME

Documento de fácil consulta, com factos diversos sobre o nosso satélite natural. (em anexo)

1.2 RETRATOS DA LUA

Galileu, depois de apontar a sua modesta luneta para a Lua, conseguiu destronar dois milénios de filosofia aristotélica, ao provar que a Lua não era perfeita e imaculada.

Os seus desenhos, feitos à mão livre, são autênticas obras de arte.

A LUA DESENHOS DE GALILEU 1610

É fantástico constatar que a Lua que ele desenhou, em 1609, é a mesma que inspirou mitos e superstições ao longo dos séculos, a mesmo que recebeu as pegadas de Neil Armstrong e a mesma que observamos hoje à noite!

• Desenhar a Lua tal como Galileu a viu.

SIMULADOR
TELESCOPE SIMULATOR

Permite simular vários telescópios, embora o de Galileu seja mais difícil, por ser demasiado rudimentar.

TELESCÓPIO DE GALILEU MUSEO GALILEO FLORENÇA

O telescópio construído por Galileu encontra-se no "Museo Galileo", em Florença, mas é possível consultar as suas características online.

A Ciência é muito mais do que equipamentos sofisticados. É observação cuidadosa, registo meticuloso... e muita coragem para questionar o estabelecido!

2.1 CALENDÁRIO LUNAR

Muitas civilizações antigas basearam os seus calendários nos ciclos lunares (meses sinódicos), correspondendo ao período entre duas fases lunares idênticas consecutivas.

Um ano baseado apenas nos ciclos lunares teria:

- 12 meses lunares = 354,36 dias
- Diferença com o ano solar = 365,25 354,36 = 10,89 dias

Como esta diferença se ia acumulando rapidamente ao longo do tempo, as estações deslocavam-se em relação ao calendário, o que criava vários problemas, especialmente na agricultura e, por isso, foi abandonado.

Contudo, ainda há vestígios da sua utilização, como por exemplo no cálculo do dia de **Páscoa**, correspondendo ao primeiro domingo depois da primeira lua cheia após o Equinócio da primavera. Para facilitar os seus cálculos, a Igreja fixou o equinócio no dia 21 de março, fazendo variar a data da Páscoa entre os dias 22 de março e 25 de abril.

Qualquer que seja o calendário escolhido, o tempo é, essencialmente, uma construção cultural, refletindo diferentes visões da mesma realidade.

- Construir um calendário lunar a partir da observação direta, durante um mês;
- Identificar o padrão de 29-30 dias.

FOLHA DE REGISTO CALENDÁRIO LUNAR ESKEMATIZE ME

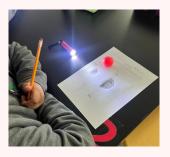
Este documento encontra-se nos anexos. Pode ser impresso e fotocopiado.

TIME AND DATE SITE

MOON NASA GOV SITE

Sites que permitem consultar a fase da Lua num local específico (útil nos dias de fraca visibilidade!)

 Explicar as fases da Lua a partir da construção de uma maquete pop-up.


0000

FOLHA PUP-UP FASES DA LUA ESKEMATIZE.ME

Este documento encontra-se nos anexos. Pode ser impresso e fotocopiado.

Nem sempre é fácil encontrar a perspetiva certa! Eis algumas dicas para ajudar os alunos a visualizar as fases da Lua.

Use uma lanterna e uma bola para ajudar a visualizar as sombras.

Construa uma maquete com cartão e esferas de esferovite.

(o aluno observa o aspeto da Lua inserindo a cabeça!)

2.2 MITOS LUNARES

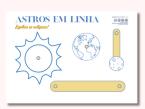
A relação entre mito e ciência é fascinante.

Universalmente, a Lua simbolizava feminilidade, mudança e até conhecimento oculto.

Na mitologia grega, **Selene** personificava a Lua como uma bela jovem que conduzia uma carruagem prateada pelo céu noturno.

Em muitas culturas, as fases lunares eram **ciclos divinos**: a Lua Nova representava morte temporária, o Quarto Crescente simbolizava o renascimento, a Lua Cheia marcava o poder máximo e a fertilidade e o Quarto Minguante representava a sabedoria.

Os mitos lunares influenciavam as práticas quotidianas: a sementeira era realizada durante a fase de Quarto Crescente (para maior crescimento) e a colheita na Lua Cheia (para maior quantidade).


Também os **eclipses** inspiraram histórias dramáticas - dragões celestiais na China, sapos gigantes no Vietname, disputas entre o Sol e a Lua em África, jaguares entre os Incas...

Estas lendas ligavam o Universo às experiências humanas, numa tentativa de compreender os fenómenos naturais.

Explicar os eclipses com manipuláveis: ("Astros em linha" e "Eclipses em disco")

- Imprimir os documentos, pintar e recortar;
- Montar como nas fotografias abaixo, inserindo ataches nos sítios indicados;
- Explicar os eclipses lunares e solares recorrendo aos manipuláveis.

ATIVIDADE CALENDÁRIO LUNAR ESKEMATIZE.ME

ATIVIDADE ECLIPSES EM DISCO ESKEMATIZE.ME

Eclipse Lunar

Estes documentos encontram-se nos anexos.

Podem ser impressos e fotocopiados.

Eclipse Solar

Debate - Mito vs Ciência

Questão central:

"O que perdemos e o que ganhamos quando substituímos mitos por explicações científicas?"

Pontos de discussão:

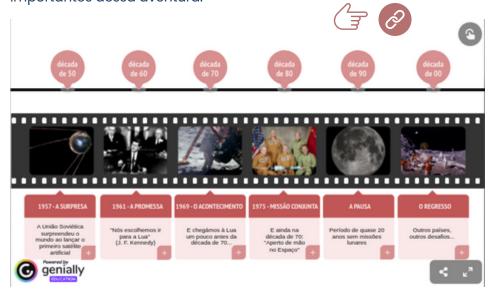
- Valor cultural e histórico dos mitos:
- Importância do rigor científico;
- Papel da imaginação e da criatividade na compreensão do mundo;
- Como conciliar tradição e conhecimento moderno.

OS MITOS (QUE NÃO PASSAM DISSO MESMO) DA LUA CHEIA (OBSERVADOR)

Na secção "Para Explorar" encontram-se mais links com informação (em português do Brasil) sobre mitos da Lua e eclipses.

O mais importante não é descartar os mitos como "errados" e a ciência como "certa", mas concluir que ambos respondem à mesma necessidade: a de compreender o mundo em que vivemos.

Os mitos antigos continuam a ter valor (cultural, histórico e até poético), mesmo quando há explicações científicas rigorosas.



CABEÇA NA LUA

3-1 A CONQUISTA DA LUA

No século XX, a Lua deixou de ser apenas um objeto de contemplação e tornou-se um destino. A corrida espacial, com toda a sua tensão geopolítica e tecnológica, representa um dos capítulos mais extraordinários da história da humanidade e um ótimo ponto de partida para a interdisciplinaridade e novas aprendizagens!

Nesta interatividade apresentam-se alguns dos marcos mais importantes dessa aventura.

As mulheres cientistas foram fundamentais para o sucesso da corrida espacial, mas só recentemente têm recebido o merecido reconhecimento.

Ouem foram as mulheres desta história?

- Identificar as principais mulheres envolvidas
- Analisar as suas contribuições específicas
- Compreender as barreiras que enfrentaram

ALGUNS EXEMPLOS

- Katherine Johnson
- Dorothy Vaughan
- Mary Jackson
- Margaret Hamilton
- Valentina Tereshkova
- Svetlana Savitskaya
- Hedy Lamarr
- Rosalind Franklin

O filme "Hidden Figures" retrata bem a situação:

FILME FIGURAS OCULTAS (HIDDEN FIGURES- 2016)

Baseado no livro homónimo de Margot Lee Shetterly, o filme apresenta-nos três funcionárias da NASA que se cansaram de ouvir "É assim que as coisas são".

Ainda hoje há mulheres que enfrentam barreiras de discriminação e preconceito na ciência. Para as superaram, precisaram de mostrar excelência técnica, persistência e solidariedade mútua. Mas cada conquista individual é um contributo para um futuro mais inclusivo!

3.2 APRENDER NA LUA

Para um cientista, o principal objetivo de chegar à Lua é aprender! E das muitas experiências lá realizadas, a mais famosa foi, sem dúvida, a queda livre do martelo e da pena, realizada pelo astronauta David Scott em 1971 na missão Apollo 15.

O objetivo era comprovar que, na ausência de resistência do ar, todos os corpos caem com a mesma aceleração, independentemente das suas massas, o que já tinha sido proposto por Galileu no século XVII. A atmosfera da Lua é praticamente inexistente, por isso essa resistência pode ser desprezada: eram as condições ideais!

Scott deixou cair simultaneamente dois objetos de alturas semelhantes (aproximadamente 1,2 metros):

- Um martelo geológico com massa de 1,32 kg
- Uma pena de falcão com massa de 0,03 kg

Ambos os objetos chegaram ao solo lunar simultaneamente, como previsto. A experiência foi transmitida ao vivo pela televisão!

VÍDEO DA TRANSMISSÃO DA EXPERIÊNCIA DE DAVID SCOTT (APOLLO 15)

Tentar realizar a experiência de David Scott na sala de aula e com a ajuda de um simulador.

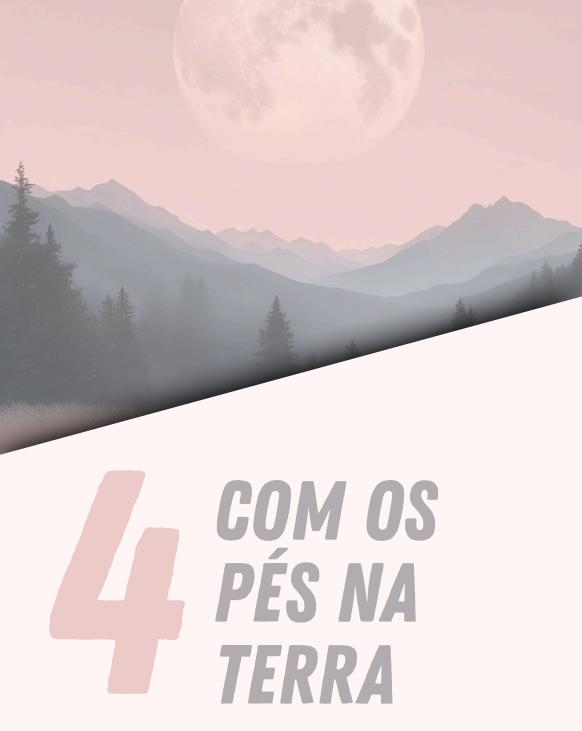
1. Em sala de aula:

Serão necessários dois objetos diferentes, como uma folha de papel e um livro. Soltar ambos ao mesmo tempo. Repetir a experiência com a folha amarrotada. O que aconteceu? Porquê?

2. Com simulador "Projectile Motion":

Selecionar dois corpos com massas diferentes, numa trajetória vertical.

Comparar as trajetórias com e sem a resistência do ar ativada.


Registar:

- Tempo de queda
- Altura máxima
- Diferenças observadas

SIMULADOR
"PROJECTILE MOTION"

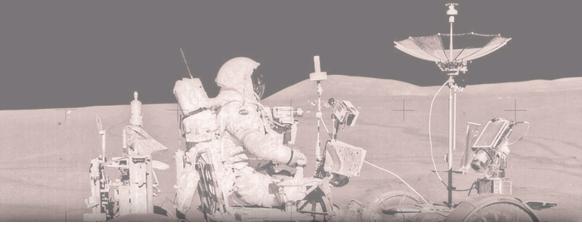
Em sala de aula ou com recurso a simuladores, as condições ideais são difíceis de obter. Não admira que os cientistas tenham sentido tanto entusiasmo com a realização desta experiência na Lua!

A viagem à Lua foi um acontecimento extraordinário, mas voltemos à Terra: foi um investimento colossal! Terá valido a pena?

O saldo é positivo: além de ter gerado uma imagem de otimismo no futuro, houve também preocupação com a divulgação científica, através de livros, filmes e não só. Muitos jovens sentiram-se inspirados a seguir carreiras na ciência e engenharia.

Embora os propósitos tenham sido diferentes, houve um impacto muito significativo nas nossas vidas cá na Terra. Muita da tecnologia de ponta foi adaptada para uso comercial, numa autêntica **revolução** tecnológica!

Um desafio que transformou a vida na Terra para sempre!


CONCLUSÃO

Ao longo deste e-book, exploramos a Lua através de perspetivas diferentes, da científica à cultural, passando pela ética e pela artística.

Esperamos que este e-book seja um convite à aventura. Porque trazer a Lua para a sala de aula é mostrar o poder transformador da curiosidade humana!

Mas estamos apenas no início!

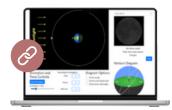
A Lua, que nos acompanha há milhares de anos, continuará a ser fonte de inspiração e descoberta. Que inovações nos aguardam? A Ciência é assim: permite-nos aprender e melhorar. Sempre!

PARA EXPLORAR

GALILEU GALILEI

ESKEMATIZE.ME SITE

No nosso site pode encontrar mais informação sobre Galileu e muito, muito mais!


MUSEO GALILEO FLORENÇA VISITA VIRTUAL

Explore todo o museu sem sair do lugar e sem pagar bilhete!

SIMULADORES DAS FASES DA LUA

Estes são apenas dois dos muitos simuladores das fases da Lua.

MITOS E LENDAS LUNARES

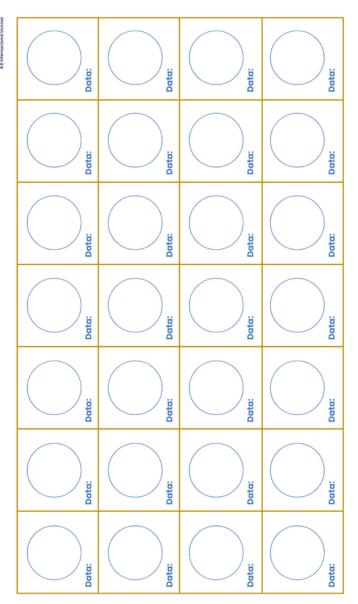
Existe informação sobre mitos e lendas muito diversificada.

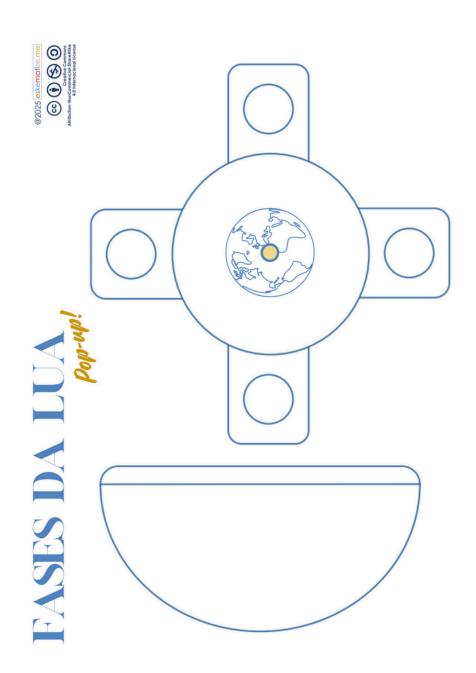
SPINOFFS

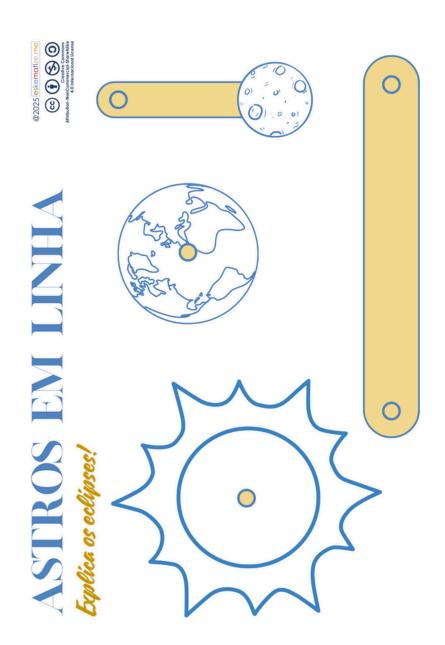
SPINOFFS DA NASA

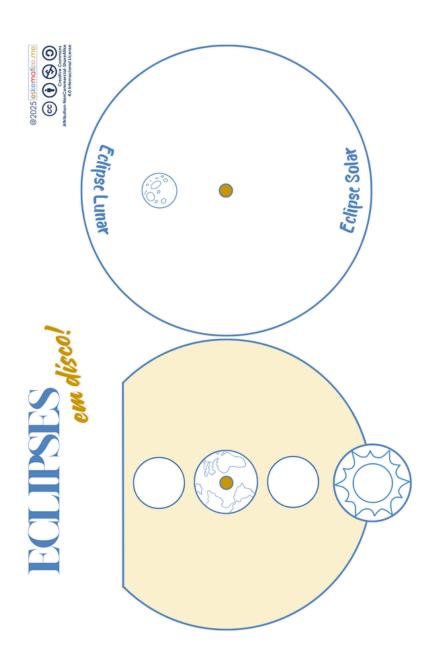
Tecnologias da NASA que se transformaram em produtos comerciais.

ANEXOS

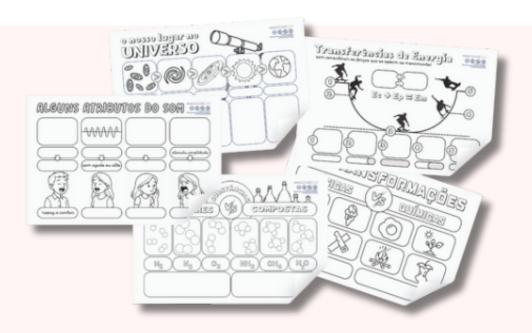



Características e factos curiosos


Praticamente não tem atmosfera e, É o único satélite natural da Terra por isso, apresenta muitas crateras (e o astro mais próximo). A sua origem de impacto, para além de uma poderá ter sido a colisão de um corpo grande amplitude térmica. Não tem celeste com a Terra, há muito tempo atrás. vegetação nem fenómenos atmosféricos. Em 1969, Neil Armstrong foi o Galileu primeiro astronauta foi o primeiro a pisar o solo lunar, astrónomo a na missão espacial estudar a sua Apollo 11. É o único superfície com astro, além da pormenor, com Terra, pisado por o auxílio da sua um ser humano. luneta. Não tem luz A sua gravidade é própria. cerca de um sexto Apenas reflete da gravidade na a luz que Terra. recebe do pelo É um corpo rochoso Sol. Mesmo de cor acinzentada, assim, é o astro coberto por um pó mais brilhante muito fino: regolito. do céu Tem montanhas (as noturno. zonas claras) e planícies (zonas escuras). Vemos sempre a mesma face da Lua a partir A diferente iluminação da sua da Terra porque o seu período de rotação é face visível origina as fases da igual ao seu período de translação (27,3 Lua, cujo ciclo demora 29,5 dias, dias). A face oculta foi fotografada apenas aproximadamente. em 1959 pela sonda soviética Luna 3.


Clker-Free-Vector-Images

Creative Commons Attribution-NonCommercial-ShareAlike CC (*) (*) (*)



Brevemente!

ESKEMAS PARA COMPLETAR E COLORIR

Sobre toda a matéria de Físico-Química do 3º ciclo.

Estes recursos permitem níveis de profundidade diferentes, à medida de cada um: para ajudar a organizar as ideias ou apenas por diversão!

